High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide.

نویسندگان

  • Jian Zheng
  • Han Zhang
  • Shaohua Dong
  • Yanpeng Liu
  • Chang Tai Nai
  • Hyeon Suk Shin
  • Hu Young Jeong
  • Bo Liu
  • Kian Ping Loh
چکیده

Transition-metal dichalcogenides like molybdenum disulphide have attracted great interest as two-dimensional materials beyond graphene due to their unique electronic and optical properties. Solution-phase processes can be a viable method for producing printable single-layer chalcogenides. Molybdenum disulphide can be exfoliated into monolayer flakes using organolithium reduction chemistry; unfortunately, the method is hampered by low yield, submicron flake size and long lithiation time. Here we report a high-yield exfoliation process using lithium, potassium and sodium naphthalenide where an intermediate ternary Li(x)MX(n) crystalline phase (X=selenium, sulphur, and so on) is produced. Using a two-step expansion and intercalation method, we produce high-quality single-layer molybdenum disulphide sheets with unprecedentedly large flake size, that is up to 400 μm(2). Single-layer dichalcogenide inks prepared by this method may be directly inkjet-printed on a wide range of substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS2 and WS2.

Bulk layered transition metal dichalcogenides (TMDs) show diamagnetic properties. When exfoliated, the materials' band gap increases and changes from an indirect band gap to a direct one. During the exfoliation, the TMDs may undergo a phase transition from 2H to 1T polymorph, which is likely electronically driven and accompanied by a metal-insulator transition. A significantly higher efficiency...

متن کامل

Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliati...

متن کامل

High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets.

Edge-functionalized graphite (EFG) is prepared via a "direct" covalent attachment of organic molecular wedges. The EFG is dispersed in N-methyl-2-pyrrolidone with a concentration as high as 0.27 mg mL(-1), leading to high-yield exfoliation of the three-dimensional graphite into two-dimensional graphene-like sheets.

متن کامل

High-Efficient Liquid Exfoliation of Boron Nitride Nanosheets Using Aqueous Solution of Alkanolamine

As one of the simple and efficient routes to access two-dimensional materials, liquid exfoliation has received considerable interest in recent years. Here, we reported on high-efficient liquid exfoliation of hexagonal boron nitride nanosheets (BNNSs) using monoethanolamine (MEA) aqueous solution. The resulting BNNSs were evaluated in terms of the yield and structure characterizations. The resul...

متن کامل

Exfoliation of large-area transition metal chalcogenide single layers

Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically < 10 μm) lateral size o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014